The 1.6m New Solar Telescope (NST) designed and manufactured by DFM Engineering and installed at the Big Bear Solar Observatory (BBSO) is the most powerful ground-based solar telescope in the world. Recent research and striking images have exposed new information about the events on the sun. The telescope has captured images of sunspots previously thought to be relatively calm that have proven to be quite tumultuous, three-ribbon solar flare events which are disturbances of the sun's magnetic field erupting charged material into space, and immense bubbling granules with magnetic flux rope explosions of energy. Nola Taylor Redd of Space.com has produced a breathtaking video of action on the sun. This incredible movie shows shockwaves created as the sunspot pulsed and the flow of material in the dark central region where temperatures reach 7,000 degrees Fahrenheit! The image detail is unprecedented because of the telescope's optical quality and capability to capture such data. The NST captures 100 images in 15 second bursts, correcting images in real time to get the sharpest images available.
Sunspots are compact, concentrated magnetic fields with some as large as Jupiter and lasting for weeks. With the NST, it was discovered that what Kosoviechev called the "previously hidden" umbra, the structure of the central region of a sunspot, is very active and helps to understand sunspot dynamics. The Kosovichev team created a 3D movie of the activity on the sun over the course of five hours to demonstrate their findings. 3D views of sunspots with the BBSO 1.6m solar telescope are diagramed and explained on the Big Bear Solar Observatory website.
The primary mirror for the NST uses a 1.6m diameter segment of a much larger parabolic mirror. This allows an unobstructed aperture to reduce scattered light in the image. Dr. Melsheimer and the DFM Engineering staff designed and implemented a unique thermal control system, a closed-cycle, chilled-air system as part of the telescope mount to limit so-called "mirror seeing". The chilled air flows over the surface of the mirror sweeping away turbulent cells and directly cooling the primary mirror on the front surface and on the back surface. Even with the "air conditioning" of the primary mirror, after a day of observations the mirror must be cooled overnight to ensure that it is somewhat cooler than ambient in the morning. Controlling the temperature of the primary mirror is a key design issue for this large-aperture solar telescope.
The 1.6m New Solar Telescope (NST) unobstructed aperture solar telescope - designed and manufactured by DFM Engineering - was officially operational in October 2009. It is the largest of its kind in the world and making phenomenal solar discoveries possible in the science of astronomy. For more information on the design, manufacture and installation of the telescope, please see NJIT Solar Telescope at BBSO posted in May, 2010 by DFM Engineering.
NJIT New Solar Telescope Manufacturing Documentation NST Fabrication History by NJIT New Solar Telescope Manufacturing Documentation "The Sun Watchers" video from Astronomy Outreach Network
|